Oxford A Level Sciences

AQA Chemistry

Section 3 Organic chemistry 1 Answers to practice questions

Question number	Answer	Marks	Guidance
1 (a) (i)	$\begin{array}{c} \textbf{M1 Initiation} \\ Cl_2 \rightarrow 2Cl \bullet \end{array}$	4	Penalise absence of dot once only.
	M2 First propagation Cl• + CHF ₃ \rightarrow CF ₃ • + HCl		Penalise + or – charges <u>every</u> <u>time</u>
	M3 Second propagation $Cl_2 + CF_3^{\bullet} \rightarrow CClF_3 + Cl^{\bullet}$		Credit CF3 • with the radical dot above / below / to either side.
	M4 Termination (must make C2F6) 2 CF ₃ • \rightarrow C ₂ F ₆ or CF ₃ CF ₃		Mark independently.
1 (a) (ii)	ultra-violet / uv / sun light	1	
	OR (very) high temperature OR 500 °C \leq T \leq 1000 °C OR 773 K \leq T \leq 1273 K		
1 (b)	$M_{\rm r}$ of CCIF ₃ = 104.5	1	Allow answers 3.00 × 10 ¹⁵ to 3.01 × 10 ¹⁵
	Moles of CCIF ₃ = $\frac{2.09 \times 10^{-4} \times 10^{3}}{104.5} = 0.002$		
	Number of molecules = $0.002 \times 6.03 \times 10^{23} = 1.20 \times 10^{21}$	1	
	$\frac{\text{Molecules in 500 cm}^3 =}{\frac{(1.20 \times 10^{21} \times 500 \times 10^{-6})}{200}} = 3.00 \times 10^{15}$	1	
2 (a)	Crude oil OR petroleum	1	Not petrol. Not distillation alone.
	Fractional distillation / fractionation	1	Not distillation alone.
2 (b)	$C_{12}H_{26} + 12.5O_2 \rightarrow 12CO + 13H_2O$	1	Allow balanced equations that produce CO_2 in addition to CO Accept multiples.
2 (c) (i)	M1 Nitrogen and oxygen (from air) react / combine / allow a correct equation	1	If nitrogen from petrol / paraffin / impurities CE=0/2
	M2 at high temperatures	1	Allow temperatures above 1000 °C or spark. Not just heat or hot. M2 dependent on M1 But allow 1 mark for nitrogen and oxygen together at high

Oxford A Level Sciences

Section 3 Organic chemistry 1 Answers to practice questions

AQA	Chemistry	
-----	-----------	--

			temperatures.
2 (c) (ii)	$2NO + O_2 \rightarrow 2NO_2$	1	Allow multiples.
2 (c) (iii)	$4NO_2 + 2H_2O + O_2 \rightarrow 4HNO_3$	1	Allow multiples.
2 (d) (i)	$\begin{array}{c} C_n H_{2n+2} \\ C_n H_{2n+2} \end{array}$	1	Allow $C_x H_{2x+2}$ Allow $C_x H_{2x+2}$
2 (d) (ii)	$C_{12}H_{26} \to C_6H_{14} + C_6H_{12}$	1	Only.
	C ₃ H ₇	1	Only.
	Zeolite / aluminosilicate(s)	1	Ignore aluminium oxide.
2 (d) (iii)	Larger molecule / longer carbon chain / more electrons / larger surface area	1	
	More / stronger <u>van der Waals' forces between</u> molecules	1	Allow dispersion forces / London forces / temporary induced dipole-dipole forces <u>between</u> <u>molecules</u> . If breaking bonds, CE = 0/2
2 (e)	2,2,3,3,4,4-hexamethylhexane	1	Only. Ignore punctuation.
	Chain	1	Ignore branch(ed).
2 (f)	Cl ₂ Cl–Cl	1	Only. Not CL_2 or $Cl2$ or $CL2$ or Cl^2 or CL^2 Ignore Chlorine.
3 (a)	Fractional distillation / fractionation / GLC / gas liquid chromatography	1	
3 (b)	C ₄ H ₁₀ Because it has a higher bp / has stronger IMF / larger molecule / longer chain / larger surface (area)	1	Need C_4H_{10} and the reason for the mark
3 (c)	$C_4H_{10} + 6\frac{1}{2} O_2 \rightarrow 4CO_2 + 5H_2O$	1	Accept multiples Ignore state symbols
3 (d)	$\begin{array}{c} \text{CO}_2 \text{ or } H_2\text{O} \text{ evolved is a greenhouse gas / CO}_2 \\ \text{or } H_2\text{O} \text{ evolved contribute to global warming /} \\ \text{the products are greenhouse gases} \end{array}$	1	Ignore climate change
3 (e)	$\begin{array}{c} CH_3CH_2CH_2CH_3 + 3.5O_2 \rightarrow C_2H_2(CO)_2O + \\ 4H_2O \end{array}$	1	Accept multiples Allow with or without a number 1

Oxford A Level Sciences

Section 3 Organic chemistry 1 Answers to practice questions

AQA Chemistry

			before the organic molecules
3 (f) (i)	$C_2H_5SH + 4.5O_2 \rightarrow 2CO_2 + 3H_2O + SO_2$	1	Accept multiples
3 (f) (ii)	Calcium oxide / calcium carbonate	1	Allow any base or alkali Allow correct formulae
	Neutralises the SO_2 / acid base reaction / it is a base	1	Can only score M2 if base or alkali used in M1 Allow M2 if blank in M1
3 (f) (iii)	Ethanol contains Hydrogen bonding	1	Breaking covalent bonds CE = 0/2
	Which is stronger than IMF (VDW / dipole- dipole forces) in ethanethiol/ (H bonding) is the strongest IMF	1	Only award M2 if M1 given, but allow IMF in ethanol are stronger than in ethanethiol for maximum 1 mark
3 (g) (i)	(2,2-)dimethylpropane	1	Ignore punctuation
3 (g) (ii)	Because molecule is smaller / less polarisable / has less surface (area)/ is more spherical / molecules can't get as close to one another (to feel the vdW forces)	1	Allow converse answers referring to straight chain isomers CE = 0/2 if breaking bonds
	vdW intermolecular forces or vdW force between molecules are weaker or fewer	1	Need vdW rather than just IMF
3 (g) (iii)	1 or one	1	
3 (h) (i)	C ₉ H ₂₀	1	H ₂₀ C ₉
3 (h) (ii)	Thermal (cracking)	1	If not thermal cracking CE = 0/2 If blank mark on
	High pressure AND high temperature <i>OR</i>	1	Allow high P and T
	Pressure of ≥ 10 atm, ≥ 1 MPa ≥ 1000 kPa AND temp of 400 °C ≤ T ≤ 1000 °C or 650 K ≤ T≤ 1300 K		Do not allow high heat If no units for T, then range must be 650-1000